The Global Monkeypox (Mpox) Outbreak: A Comprehensive Review

Vaccines (Basel). 2023 Jun 12;11(6):1093. doi: 10.3390/vaccines11061093.

Abstract

Monkeypox (Mpox) is a contagious illness that is caused by the monkeypox virus, which is part of the same family of viruses as variola, vaccinia, and cowpox. It was first detected in the Democratic Republic of the Congo in 1970 and has since caused sporadic cases and outbreaks in a few countries in West and Central Africa. In July 2022, the World Health Organization (WHO) declared a public-health emergency of international concern due to the unprecedented global spread of the disease. Despite breakthroughs in medical treatments, vaccines, and diagnostics, diseases like monkeypox still cause death and suffering around the world and have a heavy economic impact. The 85,189 reported cases of Mpox as of 29 January 2023 have raised alarm bells. Vaccines for the vaccinia virus can protect against monkeypox, but these immunizations were stopped after smallpox was eradicated. There are, however, treatments available once the illness has taken hold. During the 2022 outbreak, most cases occurred among men who had sex with men, and there was a range of 7-10 days between exposure and the onset of symptoms. Three vaccines are currently used against the Monkeypox virus. Two of these vaccines were initially developed for smallpox, and the third is specifically designed for biological-terrorism protection. The first vaccine is an attenuated, nonreplicating smallpox vaccine that can also be used for immunocompromised individuals, marketed under different names in different regions. The second vaccine, ACAM2000, is a recombinant second-generation vaccine initially developed for smallpox. It is recommended for use in preventing monkeypox infection but is not recommended for individuals with certain health conditions or during pregnancy. The third vaccine, LC16m8, is a licensed attenuated smallpox vaccine designed to lack the B5R envelope-protein gene to reduce neurotoxicity. It generates neutralizing antibodies to multiple poxviruses and broad T-cell responses. The immune response takes 14 days after the second dose of the first two vaccines and 4 weeks after the ACAM2000 dose for maximal immunity development. The efficacy of these vaccines in the current outbreak of monkeypox is uncertain. Adverse events have been reported, and a next generation of safer and specific vaccines is needed. Although some experts claim that developing vaccines with a large spectrum of specificity can be advantageous, epitope-focused immunogens are often more effective in enhancing neutralization.

Keywords: genetic clade; monkeypox virus; orthopoxvirus; pathophysiology; vaccines.

Publication types

  • Review

Grants and funding

This research received no external funding.