Super-Tough and Biodegradable Poly(lactide-co-glycolide) (PLGA) Transparent Thin Films Toughened by Star-Shaped PCL- b-PDLA Plasticizers

Polymers (Basel). 2023 Jun 8;15(12):2617. doi: 10.3390/polym15122617.

Abstract

To obtain fully degradable and super-tough poly(lactide-co-glycolide) (PLGA) blends, biodegradable star-shaped PCL-b-PDLA plasticizers were synthesized using natural originated xylitol as initiator. These plasticizers were blended with PLGA to prepare transparent thin films. Effects of added star-shaped PCL-b-PDLA plasticizers on mechanical, morphological, and thermodynamic properties of PLGA/star-shaped PCL-b-PDLA blends were investigated. The stereocomplexation strong cross-linked network between PLLA segment and PDLA segment effectively enhanced interfacial adhesion between star-shaped PCL-b-PDLA plasticizers and PLGA matrix. With only 0.5 wt% addition of star-shaped PCL-b-PDLA (Mn = 5000 g/mol), elongation at break of the PLGA blend reached approximately 248%, without any considerable sacrifice over excellent mechanical strength and modulus of PLGA.

Keywords: PLGA; fully degradable; interfacial adhesion; star-shaped PCL-b-PDLA plasticizers; stereocomplexation; super-tough.

Grants and funding

This research was supported by the Sungkyunkwan University and the BK21 FOUR (Graduate School Innovation) funded by the Ministry of Education (MOE, Korea) and National Research Foundation of Korea (NRF).