Long-Term Nutrient Cycle in Improved Grain Yield of Dryland Winter Wheat (Triticum aestivum L.) under Hydrological Process of Plant Ecosystem Distribution in the Loess Plateau of China

Plants (Basel). 2023 Jun 19;12(12):2369. doi: 10.3390/plants12122369.

Abstract

Precipitation is the major cause of crop yield variation in rainfed agriculture production in the Loess Plateau. As over fertilization is economically and environmentally undesirable, and crop yield and the resulting returns for N input are uncertain when rainfall variability is high, optimizing N management according to precipitation during fallow season is vital for efficient crop water use and high yield in dryland rainfed farming systems. Results show that the nitrogen treatment rate of 180 treatment significantly increased the tiller percentage rate, and the leaf area index at anthesis, the jointing anthesis, anthesis maturity dry matter, and nitrogen accumulation was closely related to yield. N150 treatment compared to N180 treatment significantly increased the percentage of ear-bearing tiller by 7%, dry substance accretion from jointing to anthesis by 9%, and yield by 17% and 15%, respectively. Our study has important implications for the assessment of the effects of fallow precipitation, as well as for the sustainable development of dryland agriculture in the Loess Plateau. Our results indicate that adjusting N fertilizer inputs based on summer rainfall variation could enhance wheat yield in rainfed farming systems.

Keywords: grain yield; nitrogen fertilizers; precipitation; summer fallow; winter wheat.