Mutations in Selected ABA-Related Genes Reduce Level of Arabidopsis thaliana Susceptibility to the Beet Cyst Nematode Heterodera schachtii

Plants (Basel). 2023 Jun 13;12(12):2299. doi: 10.3390/plants12122299.

Abstract

Heterodera schachtii is a common parasite of many important crops such as beets and Brassicaceae (oilseed rape, cabbage or mustard). Arabidopsis thaliana is a model plant also used for studying defence responses to pathogens or pest infections. Defence responses of plants are often regulated and fine-tuned by stress phytohormones: salicylic acid (SA), jasmonic acid (JA), ethylene (Et) and abscisic acid (ABA), of which the role of ABA in these responses is the least examined. The aim of this study was to show, if and which genes related to ABA turnover can be modulated during the development of nematode-induced feeding sites in A. thaliana roots. To answer the question, we performed infection tests on wild type and ABA mutant roots and analysed the expression levels of selected ABA-related genes (ABI1, ABI2, ABI5, PYL5, PYL6, CYP707A1 and CYP707A4) at the early stage of root infection. Our results show that the expression of ABI2, ABI5 (ABA signalling) and CYP707A4 (ABA metabolism) genes was upregulated in feeding sites at 4 dpi, whereas the level of expression of PYL5 and PYL6 (ABA receptors) genes was decreased. Mutations in ABI1, ABI2, ABI5, CYP707A1 or CYP707A4 genes led to a decrease of A. thaliana susceptibility verbalised as the number of fully developed females, whereas mutations in PYL5 or PYL6 genes did not influence the number of females of the nematode. Based on the results, it can be concluded that the modifications of analysed ABA-related gene expression are required for the proper development of nematodes; however, further in-depth analyses are required.

Keywords: Arabidopsis thaliana; Heterodera schachtii; abscisic acid; cyst nematode; plant susceptibility.