Effect of Zr2Al4C5 Content on the Mechanical Properties and Oxidation Behavior of ZrB2-SiC-Zr2Al4C5 Ceramics

Materials (Basel). 2023 Jun 20;16(12):4495. doi: 10.3390/ma16124495.

Abstract

ZrB2-SiC-Zr2Al4C5 multi-phase ceramics with uniform structure and high density were successfully prepared through the introduction of in situ synthesized Zr2Al4C5 into ZrB2-SiC ceramic via SPS at 1800 °C. A systematic analysis and discussion of the experimental results and proposed mechanisms were carried out to demonstrate the composition-dependent sintering properties, mechanical properties and oxidation behavior. The results showed that the in situ synthesized Zr2Al4C5 could be evenly distributed in the ZrB2-SiC ceramic matrix and inhibited the growth of ZrB2 grains, which played a positive role in the sintering densification of the composite ceramics. With increasing Zr2Al4C5 content, the Vickers hardness and Young's modulus of composite ceramics gradually decreased. The fracture toughness showed a trend that first increased and then decreased, and was increased by about 30% compared with ZrB2-SiC ceramics. The major phases resulting from the oxidation of samples were ZrO2, ZrSiO4, aluminosilicate and SiO2 glass. With increasing Zr2Al4C5 content, the oxidative weight showed a trend that first increased then decreased; the composite ceramic with 30 vol.% Zr2Al4C5 showed the smallest oxidative weight gain. We believe that the presence of Zr2Al4C5 results in the formation of Al2O3 during the oxidation process, subsequently resulting in a lowering of the viscosity of the glassy silica scale, which in turn intensifies the oxidation of the composite ceramics. This would also increase oxygen permeation through the scale, adversely affecting the oxidation resistance of the composites with high Zr2Al4C5 content.

Keywords: Zr2Al4C5 layered compound; ZrB2-SiC composite ceramics; in situ reactions; mechanical properties; oxidation resistance.