Effects of the Co-Overexpression of the BCL and BDNF Genes on the Gamma-Aminobutyric Acid-Ergic Differentiation of Wharton's-Jelly-Derived Mesenchymal Stem Cells

Biomedicines. 2023 Jun 18;11(6):1751. doi: 10.3390/biomedicines11061751.

Abstract

One of the problems with using MSCs (mesenchymal stem cells) to treat different neurodegenerative diseases of the central nervous system is their low ability to spontaneously differentiate into functional neurons. The aim of this study was to investigate how the co-overexpression of the BCL and BDNF genes affects the ability of genetically modified MSCs to differentiate into GABA-ergic neurons. A co-overexpression of two genes was performed, one of which, BCL, was supposed to increase the resistance of the cells to the toxic agents in the brain environment. The second one, BDNF, was supposed to direct the cells onto the neuronal differentiation pathway. As a result, the co-overexpression of both BCL2 + BDNF and BCLXL + BDNF caused an increase in the MAP2 gene expression level (a marker of the neuronal pathway) and the SYP gene that is associated with synaptogenesis. In both cases, approximately 18% of the genetically modified and then differentiated cells exhibited the presence of the GAD protein, which is characteristic of GABA-ergic neurons. Despite the presence of GAD, after both modifications, only the BCL2 and BDNF co-overexpression correlated with the ability of the modified cells to release gamma-aminobutyric acid (GABA) after depolarization. Our study identified a novel model of genetically engineered MSCs that can be used as a tool to deliver the antiapoptotic proteins (BCL) and neurotrophic factor (BDNF) directly into the brain microenvironment. Additionally, in the investigated model, the genetically modified MSCs could easily differentiate into functional GABA-ergic neurons and, moreover, due to the secreted BCL and BDNF, promote endogenous neuronal growth and encourage synaptic connections between neurons.

Keywords: BCL2; BCLXL; BDNF; GABA-ergic neurons; co-overexpression; mesenchymal stem cells.