The Junctophilin-2 Mutation p.(Thr161Lys) Is Associated with Hypertrophic Cardiomyopathy Using Patient-Specific iPS Cardiomyocytes and Demonstrates Prolonged Action Potential and Increased Arrhythmogenicity

Biomedicines. 2023 May 27;11(6):1558. doi: 10.3390/biomedicines11061558.

Abstract

Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases; it is primarily caused by mutations in sarcomeric genes. However, HCM is also associated with mutations in non-sarcomeric proteins and a Finnish founder mutation for HCM in non-sarcomeric protein junctophilin-2 (JPH2) has been identified. This study aimed at assessing the issue of modelling the rare Finnish founder mutation in cardiomyocytes (CMs) differentiated from iPSCs; therefore, presenting the same cardiac abnormalities observed in the patients. To explore the abnormal functions in JPH2-HCM, skin fibroblasts from a Finnish patient with JPH2 p.(Thr161Lys) were reprogrammed into iPSCs and further differentiated into CMs. As a control line, an isogenic counterpart was generated using the CRISPR/Cas9 genome editing method. Finally, iPSC-CMs were evaluated for the morphological and functional characteristics associated with JPH2 mutation. JPH2-hiPSC-CMs displayed key HCM hallmarks (cellular hypertrophy, multi-nucleation, sarcomeric disarray). Moreover, JPH2-hiPSC-CMs exhibit a higher degree of arrhythmia and longer action potential duration associated with slower inactivation of calcium channels. Functional evaluation supported clinical observations, with differences in beating characteristics when compared with isogenic-hiPSC-CMs. Thus, the iPSC-derived, disease-specific cardiomyocytes could serve as a translationally relevant platform to study genetic cardiac diseases.

Keywords: disease modelling; hypertrophic cardiomyopathy; isogenic human pluripotent stem cell-derived cardiomyocytes; junctophilin-2.