Gradient Hierarchical Hollow Heterostructures of Ti3C2Tx@rGO@MoS2 for Efficient Microwave Absorption

ACS Appl Mater Interfaces. 2023 Jul 12;15(27):32803-32813. doi: 10.1021/acsami.3c06860. Epub 2023 Jun 27.

Abstract

Heterostructure engineering has emerged as a promising approach for creating high-performance microwave absorption materials in various applications such as advanced communications, portable devices, and military fields. However, achieving strong electromagnetic wave attenuation, good impedance matching, and low density in a single heterostructure remains a significant challenge. Herein, a unique structural design strategy that employs a hollow structure coupled with gradient hierarchical heterostructures to achieve high-performance microwave absorption is proposed. MoS2 nanosheets are uniformly grown onto the double-layered Ti3C2Tx MXene@rGO hollow microspheres through self-assembly and sacrificial template techniques. Notably, the gradient hierarchical heterostructures, comprising a MoS2 impedance matching layer, a reduced graphene oxide (rGO) lossy layer, and a Ti3C2Tx MXene reflective layer, have demonstrated significant improvements in impedance matching and attenuation capabilities. Additionally, the incorporation of a hollow structure can further improve microwave absorption while reducing the overall composite density. The distinctive gradient hollow heterostructures enable Ti3C2Tx@rGO@MoS2 hollow microspheres with exceptional microwave absorption properties. The reflection loss value reaches as strong as -54.2 dB at a thin thickness of 1.8 mm, and the effective absorption bandwidth covers the whole Ku-band, up to 6.04 GHz. This work provides an exquisite perspective on heterostructure engineering design for developing next-generation microwave absorbers.

Keywords: attenuation capability; gradient hierarchical heterostructures; hollow structure; impedance matching; microwave absorption.