Transcription factor RcNAC091 enhances rose drought tolerance through the abscisic acid-dependent pathway

Plant Physiol. 2023 Sep 22;193(2):1695-1712. doi: 10.1093/plphys/kiad366.

Abstract

NAC (NAM, ATAF1,2, and CUC2) transcription factors (TFs) play critical roles in controlling plant growth, development, and abiotic stress responses. However, few studies have examined NAC proteins related to drought stress tolerance in rose (Rosa chinensis). Here, we identified a drought- and abscisic acid (ABA)-induced NAC TF, RcNAC091, that localizes to the nucleus and has transcriptional activation activity. Virus-induced silencing of RcNAC091 resulted in decreased drought stress tolerance, and RcNAC091 overexpression had the opposite effect. Specifically, ABA mediated RcNAC091-regulated drought tolerance. A transcriptomic comparison showed altered expression of genes involved in ABA signaling and oxidase metabolism in RcNAC091-silenced plants. We further confirmed that RcNAC091 directly targets the promoter of RcWRKY71 in vivo and in vitro. Moreover, RcWRKY71-slienced rose plants were not sensitive to both ABA and drought stress, whereas RcWRKY71-overexpressing plants were hypersensitive to ABA, which resulted in drought-tolerant phenotypes. The expression of ABA biosynthesis- and signaling-related genes was impaired in RcWRKY71-slienced plants, suggesting that RcWRKY71 might facilitate the ABA-dependent pathway. Therefore, our results show that RcWRKY71 is transcriptionally activated by RcNAC091, which positively modulates ABA signaling and drought responses. The results of this study provide insights into the roles of TFs as functional links between RcNAC091 and RcWRKY71 in priming resistance; our findings also have implications for the approaches to enhance the drought resistance of roses.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abscisic Acid* / metabolism
  • Abscisic Acid* / pharmacology
  • Drought Resistance
  • Droughts
  • Gene Expression Regulation, Plant
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plants, Genetically Modified / metabolism
  • Rosa* / genetics
  • Rosa* / metabolism
  • Stress, Physiological / genetics
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Abscisic Acid
  • Transcription Factors
  • Plant Proteins