Chemical Approach Towards Broadband Spintronics on Nanoscale Pyrene Films

Angew Chem Int Ed Engl. 2023 Aug 28;62(35):e202307458. doi: 10.1002/anie.202307458. Epub 2023 Jul 19.

Abstract

The injection of pure spin current into the non-magnetic layer plays a crucial role in transmitting, processing, and storing data information in the realm of spintronics. To understand broadband molecular spintronics, pyrene oligomer film (≈20 nm thickness) was prepared using an electrochemical method forming indium tin oxide (ITO) electrode/pyrene covalent interfaces. Permalloy (Ni80 Fe20 ) films with different nanoscale thicknesses were used as top contact over ITO/pyrene layers to estimate the spin pumping efficiency across the interfaces using broadband ferromagnetic resonance spectra. The spintronic devices are composed of permalloy/pyrene/ITO orthogonal configuration, showing remarkable spin pumping from permalloy to pyrene film. The large spin pumping is evident from the linewidth broadening of 5.4 mT at 9 GHz, which is direct proof of spin angular momentum transfer across the interface. A striking observation is made with the high spin-mixing conductance of ≈1.02×1018 m-2 , a value comparable to the conventional heavy metals. Large spin angular moment transfer was observed at the permalloy-pyrene interfaces, especially at the lower thickness of permalloy, indicating a strong spinterface effect. Pure spin current injection from ferromagnetic into electrochemically grown pyrene films ensures efficient broadband spin transport, which opens a new area in molecular broadband spintronics.

Keywords: Covalent Interfaces; Linewidth Broadening; Spin Pumping; Spin-Mixing Conductance; Spintronic.