Nutritional Quality and Popability of Popcorn (Zea mays L. var. everta) in Response to Compost and NPK 20-7-3 Application under Dryland Condition of South Africa

Int J Food Sci. 2023 Jun 15:2023:6115098. doi: 10.1155/2023/6115098. eCollection 2023.

Abstract

The dietary value of popcorn, an important snack, depends on its proximate and nutritional constituents, while the economic worth is based on popability and expansion traits of the kernels. There is paucity of information on how soil fertility influences or relates with popping potentials as well as quality of popcorn kernel in semi-arid region. Therefore, the proximate composition and popping parameters of popcorn in response to organic and inorganic fertilizers were investigated. The field trial was conducted in 2017-2019, and it comprised five amendment rates including 90 and 180 kg ha-1 NPK fertilizer and 4 and 8 t ha-1 compost and unamended treatment as the control. The trial was arranged in randomized complete block design in triplicate. Data on kernel yield, biomass, and harvest index were evaluated. Kernels were analysed for proximate composition and popping indices using standard procedures. Across the two seasons, mean protein (8.1%) and fibre (10.2%) contents were highest in kernels from plots fertilized with NPK at 180 kg ha-1, while grains from plots fertilized with 8 t ha-1 compost had the highest moisture (19.3%) and starch (50.1%) contents. The highest kernel expansion of 54.18 cm3 g-1 and 77.6% popped kernels were obtained in plots fertilized with 4 t ha-1 compost. Most of the kernels (61%) were small-sized caryopsis. Popability is significantly associated with volume expansion (r = 0.696). Proximate components and popability improved greatly in compost-augmented field relative to the unfertilized plots. Application of 4 or 8 t ha-1 sorted municipal solid waste compost to Luvisol enhanced growth and nutritional quality of popcorn. In view of promoting nutrient cycling towards improving soil fertility without compromising environmental health, compost is comparable and a good alternative to fossil-based mineral fertilizers.