Structural changes of polysaccharides from Astragulus after honey processing and their bioactivities on human gut microbiota

J Sci Food Agric. 2023 Nov;103(14):7241-7250. doi: 10.1002/jsfa.12808. Epub 2023 Jul 6.

Abstract

Background: Astragali Radix (also known as Astragulus) is a traditional medicinal and edible homologous plant for tonifying Qi. Honey-processed Astragalus is a dosage form of Astragali Radix processed with honey, which exhibited better efficacy of tonifying Qi than the raw product. Polysaccharides are their main active components.

Results: APS2a and HAPS2a were initially isolated from Astragulus and honey-processed Astragulus. Both of them are highly branched acidic heteropolysaccharides containing ɑ-configuration and β-configuration glycosidic bonds. The molecular weight and the molecular dimension of HAPS2a decreased and the GalA contained in APS2a was converted to Gal in HAPS2a. The α-configuration galactose residue 1,3,4-α-Galp in the backbone of APS2a was converted to the corresponding β-configuration galactose residue 1,3,4-β-Galp in the backbone of HAPS2a and the uronic acid residue T-α-GalpA in the sidechain of APS2a was converted to the corresponding neutral residue T-α-Galp in the side chain of HAPS2a. Bioactivity results showed that HAPS2a had better probiotic effects on Bacteroides ovatus, Bacteroides thetaiotaomicron, Bifidobacterium longum and Lactobacillus rhamnosus strains than APS2a. After degradation, the molecular weights of HAPS2a and APS2a decreased with the changes in their monosaccharide composition. The contents of total short-chain fatty acids (SCFAs) and other organic acids in HAPS2a group were higher than APS2a group.

Conclusions: Two novel high-molecular-weight polysaccharides named APS2a and HAPS2a had different probiotic activities in vitro, which might be due to their structural differences before and after honey processing. Both of them might be possibly used as an immunopotentiator in healthy foods or dietary supplement. © 2023 Society of Chemical Industry.

Keywords: SCFAs; honey-processed Astragalus polysaccharides; human gut microbiota; structural characterization.

MeSH terms

  • Astragalus Plant* / chemistry
  • Galactose
  • Gastrointestinal Microbiome*
  • Honey* / analysis
  • Humans
  • Polysaccharides / chemistry

Substances

  • Galactose
  • Polysaccharides