Effect of external electric fields in the charge transfer rates of donor-acceptor dyads: A straightforward computational evaluation

J Chem Phys. 2023 Jun 28;158(24):244111. doi: 10.1063/5.0148941.

Abstract

We present a straightforward and low-cost computational protocol to estimate the variation of the charge transfer rate constant, kCT, in a molecular donor-acceptor caused by an external electric field. The proposed protocol also allows for determining the strength and direction of the field that maximize the kCT. The application of this external electric field results in up to a >4000-fold increase in the kCT for one of the systems studied. Our method allows the identification of field-induced charge-transfer processes that would not occur without the perturbation caused by an external electric field. In addition, the proposed protocol can be used to predict the effect on the kCT due to the presence of charged functional groups, which may allow for the rational design of more efficient donor-acceptor dyads.