MoS2 @Polyaniline for Aqueous Ammonium-Ion Supercapacitors

Adv Mater. 2023 Sep;35(39):e2303732. doi: 10.1002/adma.202303732. Epub 2023 Aug 7.

Abstract

Ammonium-ion aqueous supercapacitors are raising notable attention owing to their cost, safety, and environmental advantages, but the development of optimized electrode materials for ammonium-ion storage still lacks behind expectations. To overcome current challenges, here, a sulfide-based composite electrode based on MoS2 and polyaniline (MoS2 @PANI) is proposed as an ammonium-ion host. The optimized composite possesses specific capacitances above 450 F g-1 at 1 A g-1 , and 86.3% capacitance retention after 5000 cycles in a three-electrode configuration. PANI not only contributes to the electrochemical performance but also plays a key role in defining the final MoS2 architecture. Symmetric supercapacitors assembled with such electrodes display energy densities above 60 Wh kg-1 at a power density of 725 W kg-1 . Compared with Li+ and K+ ions, the surface capacitive contribution in NH4 + -based devices is lower at every scan rate, which points to an effective generation/breaking of H-bonds as the mechanism controlling the rate of NH4 + insertion/de-insertion. This result is supported by density functional theory calculations, which also show that sulfur vacancies effectively enhance the NH4 + adsorption energy and improve the electrical conductivity of the whole composite. Overall, this work demonstrates the great potential of composite engineering in optimizing the performance of ammonium-ion insertion electrodes.

Keywords: MoS2; non-metal charge carriers; polyaniline; sulfur vacancies; supercapacitors.