Trifluoromethyl-Substituted Conjugated Random Terpolymers Enable High-Performance Small and Large-Area Organic Solar Cells Using Halogen-Free Solvent

Adv Sci (Weinh). 2023 Aug;10(24):e2302376. doi: 10.1002/advs.202302376. Epub 2023 Jun 25.

Abstract

The advancement of non-fullerene acceptors with crescent-shaped geometry has led to the need for polymer donor improvements. Additionally, there is potential to enhance the photovoltaic parameters in high-efficiency organic solar cells (OSCs). The random copolymerization method is a straightforward and effective strategy to further optimize photoactive morphology and enhance device performance. However, finding a suitable third component in terpolymers remains a crucial challenge. In this study, a series of terpolymer donors (PTF3, PTF5, PTF10, PTF20, and PTF50) is synthesized by introducing varying amounts of the trifluoromethyl-substituted unit (CF3) into the PM6 polymer backbone. Even subtle changes in the CF3 content can significantly enhance all the photovoltaic parameters due to the optimized energy levels, molecular aggregation/miscibility, and bulk-heterojunction morphology of the photoactive materials. Thus, the best binary OSC based on the PTF5:Y6-BO achieves an outstanding power conversion efficiency (PCE) of 18.2% in the unit cell and a PCE of 11.6% in the sub-module device (aperture size: 54.45 cm2 ), when using halogen-free solvent o-xylene. This work showcases the remarkable potential of the easily accessible CF3 unit as a key constituent in the construction of terpolymer donors in high-performance OSCs.

Keywords: halogen-free solvent; organic solar cells; random copolymerization; sub-module devices; trifluoromethyl-substitution.