Whole tumour cell-based vaccines: tuning the instruments to orchestrate an optimal antitumour immune response

Br J Cancer. 2023 Sep;129(4):572-585. doi: 10.1038/s41416-023-02327-6. Epub 2023 Jun 24.

Abstract

Immunotherapy, particularly those based on immune checkpoint inhibitors (ICIs), has become a useful approach for many neoplastic diseases. Despite the improvements of ICIs in supporting tumour regression and prolonging survival, many patients do not respond or develop resistance to treatment. Thus, therapies that enhance antitumour immunity, such as anticancer vaccines, constitute a feasible and promising therapeutic strategy. Whole tumour cell (WTC) vaccines have been extensively tested in clinical studies as intact or genetically modified cells or tumour lysates, injected directly or loaded on DCs with distinct adjuvants. The essential requirements of WTC vaccines include the optimal delivery of a broad battery of tumour-associated antigens, the presence of tumour cell-derived molecular danger signals, and adequate adjuvants. These factors trigger an early and robust local innate inflammatory response that orchestrates an antigen-specific and proinflammatory adaptive antitumour response capable of controlling tumour growth by several mechanisms. In this review, the strengths and weaknesses of our own and others' experiences in studying WTC vaccines are revised to discuss the essential elements required to increase anticancer vaccine effectiveness.

Publication types

  • Review

MeSH terms

  • Antigens, Neoplasm
  • Cancer Vaccines* / therapeutic use
  • Humans
  • Immunity
  • Immunotherapy
  • Neoplasms* / therapy

Substances

  • Cancer Vaccines
  • Antigens, Neoplasm