The association between inflammation and kynurenine pathway metabolites in electroconvulsive therapy for schizophrenia: Implications for clinical efficacy

Brain Behav Immun. 2023 Oct:113:1-11. doi: 10.1016/j.bbi.2023.06.016. Epub 2023 Jun 21.

Abstract

The kynurenine pathway (KP) of tryptophan has been implicated in the pathogenesis of schizophrenia and its interaction with the immune system has been suggested to play a role. In this study, 28 schizophrenia patients and 25 healthy controls were recruited and divided into different inflammatory subgroups using a two-step recursive clustering analysis. Cytokine gene expression and plasma KP metabolites were measured before, during and after treatment. Our findings indicated that schizophrenia patients had lower levels of Tryptophan (TRP), N-formylkynurenine (NFK), xanthinic acid (XA), quinolinic acid (QA), kynurenic acid (KYNA), KYNA/KYN and QA/KYNA, but higher levels of IL-18 mRNA, KYN/TRP compared to healthy controls (all p < 0.05). After electroconvulsive therapy (ECT), patients with low inflammation achieved better clinical improvement (PANSS scores) compared to those with high inflammation (F = 5.672, P = 0.025), especially in negative symptoms (F = 6.382, P = 0.018, η2 = 0.197). While IL-18 mRNA (F = 32.910, P < 0.0001) was significantly decreased following ECT, the KYN/TRP (F = 3.455, p = 0.047) and KYNA/TRP (F = 4.264, P = 0.026) only significantly decreased in patients with low inflammation. Correlation analyses revealed that baseline IL-18 gene expression significantly correlated with pre- (r = 0.537, p = 0.008) and post-KYNA/TRP (r = 0.443, p = 0.034), post-KYN/TRP (r = 0.510, p = 0.013), and post-negative symptoms (r = 0.525, p = 0.010). Moreover, baseline TRP (r = -0.438, p = 0.037) and XA (r = -0.516, p = 0.012) were negatively correlated with baseline PANSS, while post-KYN (r = -0.475, p = 0.022), 2-AA (r = -0.447, p = 0.032) and KYN/TRP (r = -0.566, p = 0.005) were negatively correlated with Montreal Cognitive Assessment (MoCA) following ECT. Overall, these findings suggested that the association between inflammation and kynurenine pathway plays an essential role in mechanism of ECT for schizophrenia and that the regulation of ECT on KP is influenced by inflammatory characteristics, which may relate to clinical efficacy in schizophrenia.

Keywords: Cytokine gene expression; Electroconvulsive therapy; Inflammation; Kynurenine pathway; Schizophrenia; TRP.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electroconvulsive Therapy*
  • Humans
  • Interleukin-18
  • Kynurenic Acid
  • Kynurenine / metabolism
  • RNA, Messenger
  • Schizophrenia* / therapy
  • Treatment Outcome
  • Tryptophan / metabolism

Substances

  • Kynurenine
  • Tryptophan
  • Interleukin-18
  • Kynurenic Acid
  • RNA, Messenger