Highly sensitive, modification-free, and dynamic real-time stereo-optical immuno-sensor

Biosens Bioelectron. 2023 Oct 1:237:115477. doi: 10.1016/j.bios.2023.115477. Epub 2023 Jun 16.

Abstract

Modification-free biosensing with high specificity and sensitivity is essential for miniaturized, online, integrated, and rapid, or even real-time molecular analyses. However, most optical biosensors are based on surface pre-modification or fluorescent labeling, and have either low sensitivity or low quality factor (Q). To address these difficulties, in this study, an optical sensor prototype was developed with a microbubble optofluidic channel integrated inside a Fabry-Pérot cavity to three-dimensionally tailor the intra-cavity light field via the intra-cavity lensing (microbubble) configuration. A high Q-factor (∼105), small mode volume, and high light energy density were experimentally achieved with this "stereo-sensor" while maintaining an ultrahigh refractive index (RI) sensitivity (679 nm/RIU) and ultra-small RI resolution (∼10-7 RIU at 950 nm). Moreover, specific detection of very low concentration of biomolecules (5 fg/mL for human IgG and 0.5 pg/mL for human serum albumin (HSA)) and wide range of protein concentrations (e.g., fg/mL-ng/mL for human IgG and pg/mL-ng/mL for HSA) without probe pre-modification were achieved owing to the RI change specifically associated with the probe-target binding and the corresponding bio-macromolecular conformation change. This modification-free stereosensing scenario is applicable to continuous, real-time, and multiplexed operations, thus showing potential for online, integrated, dynamic, biomolecular analyses in vitro or in vivo, such as the dynamic metabolic analysis of single cells or organoids and point-of-care tests.

Keywords: Biosensing; Fabry-Pérot microcavity; Microbubble; Protein conformation; Stereo sensor.

MeSH terms

  • Biosensing Techniques*
  • Humans
  • Immunoglobulin G
  • Refractometry

Substances

  • Immunoglobulin G