BatTS: a hybrid method for optimizing deep feedforward neural network

PeerJ Comput Sci. 2023 Jan 10:9:e1194. doi: 10.7717/peerj-cs.1194. eCollection 2023.

Abstract

Deep feedforward neural networks (DFNNs) have attained remarkable success in almost every computational task. However, the selection of DFNN architecture is still based on handcraft or hit-and-trial methods. Therefore, an essential factor regarding DFNN is about designing its architecture. Unfortunately, creating architecture for DFNN is a very laborious and time-consuming task for performing state-of-art work. This article proposes a new hybrid methodology (BatTS) to optimize the DFNN architecture based on its performance. BatTS is a result of integrating the Bat algorithm, Tabu search (TS), and Gradient descent with a momentum backpropagation training algorithm (GDM). The main features of the BatTS are the following: a dynamic process of finding new architecture based on Bat, the skill to escape from local minima, and fast convergence in evaluating new architectures based on the Tabu search feature. The performance of BatTS is compared with the Tabu search based approach and random trials. The process goes through an empirical evaluation of four different benchmark datasets and shows that the proposed hybrid methodology has improved performance over existing techniques which are mainly random trials.

Keywords: ANN; Optimization; Tabu search.

Grants and funding

The authors received no funding for this work.