Trade-Offs between Direct Emission Reduction and Intersectoral Additional Emissions: Evidence from the Electrification Transition in China's Transport Sector

Environ Sci Technol. 2023 Aug 8;57(31):11389-11400. doi: 10.1021/acs.est.3c00556. Epub 2023 Jun 21.

Abstract

Electrifying the transport sector is crucial for reducing CO2 emissions and achieving Paris Agreement targets. This largely depends on rapid decarbonization in power plants; however, we often overlook the trade-offs between reduced transportation emissions and additional energy-supply sector emissions induced by electrification. Here, we developed a framework for China's transport sector, including analyzing driving factors of historical CO2 emissions, collecting energy-related parameters of numerous vehicles based on the field- investigation, and assessing the energy-environment impacts of electrification policies with national heterogeneity. We find holistic electrification in China's transport sector will cause substantial cumulative CO2 emission reduction (2025-2075), equivalent to 19.8-42% of global annual emissions, but with a 2.2-16.1 GtCO2 net increase considering the additional emissions in energy-supply sectors. It also leads to a 5.1- to 6.7-fold increase in electricity demand, and the resulting CO2 emissions far surpass the emission reduction achieved. Only under 2 and 1.5 °C scenarios, forcing further decarbonization in the energy supply sectors, will the holistic electrification of transportation have a robust mitigation effect, -2.5 to -7.0 Gt and -6.4 to -11.3 Gt net-negative emissions, respectively. Therefore, we conclude that electrifying the transport sector cannot be a one-size-fits-all policy, requiring synergistically decarbonization efforts in the energy-supply sectors.

Keywords: Decarbonization; Electrification; Energy transition; SSP scenarios; Transport sector.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon Dioxide* / analysis
  • China
  • Electricity
  • Transportation
  • Vehicle Emissions*

Substances

  • Carbon Dioxide
  • Vehicle Emissions