Dynamic Energy Measurements in Charge Detection Mass Spectrometry Eliminate Adverse Effects of Ion-Ion Interactions

Anal Chem. 2023 Jul 4;95(26):10077-10086. doi: 10.1021/acs.analchem.3c01520. Epub 2023 Jun 21.

Abstract

Ion-ion interactions in charge detection mass spectrometers that use electrostatic traps to measure masses of individual ions have not been reported previously, although ion trajectory simulations have shown that these types of interactions affect ion energies and thereby degrade measurement performance. Here, examples of interactions between simultaneously trapped ions that have masses ranging from ca. 2 to 350 MDa and ca. 100 to 1000 charges are studied in detail using a dynamic measurement method that makes it possible to track the evolution of the mass, charge, and energy of individual ions over their trapping lifetimes. Signals from ions that have similar oscillation frequencies can have overlapping spectral leakage artifacts that result in slightly increased uncertainties in the mass determination, but these effects can be mitigated by the careful choice of parameters used in the short-time Fourier transform analysis. Energy transfers between physically interacting ions are also observed and quantified with individual ion energy measurement resolution as high as ∼950. The mass and charge of interacting ions do not change, and their corresponding measurement uncertainties are equivalent to ions that do not undergo physical interactions. Simultaneous trapping of multiple ions in CDMS can greatly decrease the acquisition time necessary to accumulate a statistically meaningful number of individual ion measurements. These results demonstrate that while ion-ion interactions can occur when multiple ions are trapped, they have negligible effects on mass accuracy when using the dynamic measurement method.