Reversible Light-Induced Dimerization of Secondary Face Azobenzene-Functionalized β-Cyclodextrin Derivatives

J Org Chem. 2023 Jul 7;88(13):8674-8689. doi: 10.1021/acs.joc.3c00564. Epub 2023 Jun 21.

Abstract

β-cyclodextrin (βCyD) derivatives equipped with aromatic appendages at the secondary face exhibit tailorable self-assembling capabilities. The aromatic modules can participate in inclusion phenomena and/or aromatic-aromatic interactions. Supramolecular species can thus form that, at their turn, can engage in further co-assembling with third components in a highly regulated manner; the design of nonviral gene delivery systems is an illustrative example. Endowing such systems with stimuli responsiveness while keeping diastereomeric purity and a low synthetic effort is a highly wanted advancement. Here, we show that an azobenzene moiety can be "clicked" to a single secondary O-2 position of βCyD affording 1,2,3-triazole-linked βCyD-azobenzene derivatives that undergo reversible light-controlled self-organization into dimers where the monomer components face their secondary rims. Their photoswitching and supramolecular properties have been thoroughly characterized by UV-vis absorption, induced circular dichroism, nuclear magnetic resonance, and computational techniques. As model processes, the formation of inclusion complexes between a water-soluble triazolylazobenzene derivative and βCyD as well as the assembly of native βCyD/βCyD-azobenzene derivative heterodimers have been investigated in parallel. The stability of the host-guest supramolecules has been challenged against the competitor guest adamantylamine and the decrease of the medium polarity using methanol-water mixtures. The collective data support that the E-configured βCyD-azobenzene derivatives, in aqueous solution, form dimers stabilized by the interplay of aromatic-aromatic and aromatic-βCyD cavity interactions after partial reciprocal inclusion. Photoswitching to the Z-isomer disrupts the dimers into monomeric species, offering opportunity for the spatiotemporal control of the organizational status by light.

MeSH terms

  • Azo Compounds
  • Dimerization
  • Polymers
  • Water
  • beta-Cyclodextrins*

Substances

  • azobenzene
  • beta-Cyclodextrins
  • Azo Compounds
  • Polymers
  • Water