Flexible, Transparent, and Wafer-Scale Artificial Synapse Array Based on TiOx /Ti3 C2 Tx Film for Neuromorphic Computing

Adv Mater. 2023 Aug;35(33):e2303737. doi: 10.1002/adma.202303737. Epub 2023 Jul 4.

Abstract

A high-density neuromorphic computing memristor array based on 2D materials paves the way for next-generation information-processing components and in-memory computing systems. However, the traditional 2D-materials-based memristor devices suffer from poor flexibility and opacity, which hinders the application of memristors in flexible electronics. Here, a flexible artificial synapse array based on TiOx /Ti3 C2 Tx film is fabricated by a convenient and energy-efficient solution-processing technique, which realizes high transmittance (≈90%) and oxidation resistance (>30 days). The TiOx /Ti3 C2 Tx memristor shows low device-to-device variability, long memory retention and endurance, a high ON/OFF ratio, and fundamental synaptic behavior. Furthermore, satisfactory flexibility (R = 1.0 mm) and mechanical endurance (104 bending cycles) of the TiOx /Ti3 C2 Tx memristor are achieved, which is superior to other film memristors prepared by chemical vapor deposition. In addition, high-precision (>96.44%) MNIST handwritten digits recognition classification simulation indicates that the TiOx /Ti3 C2 Tx artificial synapse array holds promise for future neuromorphic computing applications, and provides excellent high-density neuron circuits for new flexible intelligent electronic equipment.

Keywords: 2D materials; TiOx/Ti3C2Tx heterostructure; flexible artificial synapse arrays; neuromorphic computing.