Electrocatalytic Urea Synthesis with 63.5 % Faradaic Efficiency and 100 % N-Selectivity via One-step C-N coupling

Angew Chem Int Ed Engl. 2023 Aug 14;62(33):e202305447. doi: 10.1002/anie.202305447. Epub 2023 Jul 7.

Abstract

Electrocatalytic urea synthesis via coupling N2 and CO2 provides an effective route to mitigate energy crisis and close carbon footprint. However, the difficulty on breaking N≡N is the main reason that caused low efficiencies for both electrocatalytic NH3 and urea synthesis, which is the bottleneck restricting their industrial applications. Herein, a new mechanism to overcome the inert of the nitrogen molecule was proposed by elongating N≡N instead of breaking N≡N to realize one-step C-N coupling in the process for urea production. We constructed a Zn-Mn diatomic catalyst with axial chloride coordination, Zn-Mn sites display high tolerance to CO poisoning and the Faradaic efficiency can even be increased to 63.5 %, which is the highest value that has ever been reported. More importantly, negligible N≡N bond breakage effectively avoids the generation of ammonia as intermediates, therefore, the N-selectivity in the co-electrocatalytic system reaches100 % for urea synthesis. The previous cognition that electrocatalysts for urea synthesis must possess ammonia synthesis activity has been broken. Isotope-labelled measurements and Operando synchrotron-radiation Fourier transform infrared spectroscopy validate that activation of N-N triple bond and nitrogen fixation activity arise from the one-step C-N coupling process of CO species with adsorbed N2 molecules.

Keywords: 100 % N-Selectivity; Electrocatalysis; Nitrogen Activation; One-Step C−N Coupling; Urea Synthesis.