A K+-sensitive photonic crystal hydrogel sensor for efficient visual monitoring of hyperkalemia/hypokalemia

Soft Matter. 2023 Jul 5;19(26):4880-4890. doi: 10.1039/d3sm00513e.

Abstract

Potassium ions (K+) play crucial roles in many biological processes. Abnormal K+ levels in the body are usually associated with physiological disorders or diseases, and thus, developing K+-sensitive sensors/devices is of great importance for disease diagnosis and health monitoring. Herein, we report a K+-sensitive photonic crystal hydrogel (PCH) sensor with bright structural colors for efficient monitoring of serum potassium. This PCH sensor consists of a poly(acrylamide-co-N-isopropylacrylamide-co-benzo-15-crown-5-acrylamide) (PANBC) smart hydrogel with embedded Fe3O4 colloidal photonic crystals (CPCs), which could strongly diffract visible light and endow the hydrogel with brilliant structural colors. The rich 15-crown-5 (15C5) units appended on the polymer backbone could selectively bind K+ ions to form stable 2 : 1 [15C5]2/K+ supramolecular complexes. These bis-bidentate complexes served as physical crosslinkers to crosslink the hydrogel and contracted its volume, and thus reduced the lattice spacing of Fe3O4 CPCs and blue-shifted the light diffraction, and finally reported on the K+ concentrations by a color change of the PCH. Our fabricated PCH sensor possessed high K+ selectivity and pH- and thermo-sensitive response performances to K+. Most interestingly, the K+-responding PANBC PCH sensor could be conveniently regenerated via simple alternate flushing with hot/cold water due to the excellent thermosensitivity of the introduced PNIPAM moieties into the hydrogel. Such a PCH sensor provides a simple, low-cost and efficient strategy for visualized monitoring of hyperkalemia/hypokalemia, which will significantly promote the development of biosensors.

MeSH terms

  • Hydrogels*
  • Hyperkalemia* / diagnosis
  • Hypokalemia* / diagnosis
  • Optics and Photonics
  • Potassium

Substances

  • Hydrogels
  • Potassium