Development of an LC-MS/MS-based method for quantification and pharmacokinetics study on SCID mice of a dehydroabietylamine-adamantylamine conjugate, a promising inhibitor of the DNA repair enzyme

J Pharm Biomed Anal. 2023 Sep 20:234:115507. doi: 10.1016/j.jpba.2023.115507. Epub 2023 Jun 7.

Abstract

Earlier, it was found that the agent KS-389, a conjugate of dehydroabietylamine and 1-aminoadamantane, possess inhibiting activity with regard to Tdp1. It this study, LC-MS/MS-based methods of quantification of KS-389 in mice blood and several organs (brain, liver and kidney) were developed and validated. Validation of the methods was performed according to the guidelines of U.S. Food and Drug Administration and European Medicines Agency in terms of selectivity, linearity, accuracy, precision, recovery, matrix effect, stability and carry-over. Dried blood spots (DBS) method was used for blood sample preparation. HPLC separation was performed on a reversed-phase column; the total analysis time was 12 min. Mass spectral detection was performed on a 6500 QTRAP mass spectrometer in multiple reaction monitoring mode. Transitions 463.5→135.1/107.2 and 336.2→332.2/176.2 were scanned for KS-389 and 2,5-bis(4-diethylaminophenyl)-1,3,4-oxadiazole used as the internal standard, respectively. Pharmacokinetics of the compound as well as its distribution in the organs were studied on SCID mice after intraperitoneal administration of the substance at a dose of 5 mg/kg, and it was found that its maximum concentration in blood is reached in 1-1.5 h and was 80 ng/mL. The maximum concentration in all organs is reached after the same time and is approximately 1500 ng/g and 1100 ng/g in liver and kidney, respectively. This is the first report on the pharmacokinetics of Tdp1 inhibitor based on dehydroabietylamine and 1-aminoadamantane after a single administration to mice. Also, the substance was found to be able to penetrate the blood-brain barrier which is important for, and its maximum concentration was c.a. 25-30 ng/g. These results are important for glioma treatment and make it promising for this purpose.

Keywords: DBS sample preparation; Liquid chromatography; Pharmacokinetics; Tandem mass spectrometry; Tdp1 inhibitor; Tissue homogenization.

MeSH terms

  • Amantadine*
  • Animals
  • Chromatography, Liquid / methods
  • DNA Repair Enzymes
  • Limit of Detection
  • Mice
  • Mice, SCID
  • Reproducibility of Results
  • Tandem Mass Spectrometry* / methods

Substances

  • Amantadine
  • dehydroabietylamine
  • DNA Repair Enzymes