Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks

Comput Methods Programs Biomed. 2023 Oct:240:107632. doi: 10.1016/j.cmpb.2023.107632. Epub 2023 May 29.

Abstract

Background and objectives: Spectral-domain optical coherence tomography (SD-OCT) is a valuable tool for non-invasive imaging of the retina, allowing the discovery and visualization of localized lesions, the presence of which is associated with eye diseases. The present study introduces X-Net, a weakly supervised deep-learning framework for automated segmentation of paracentral acute middle maculopathy (PAMM) lesions in retinal SD-OCT images. Despite recent advances in the development of automatic methods for clinical analysis of OCT scans, there remains a scarcity of studies focusing on the automated detection of small retinal focal lesions. Additionally, most existing solutions depend on supervised learning, which can be time-consuming and require extensive image labeling, whereas X-Net offers a solution to these challenges. As far as we can determine, no prior study has addressed the segmentation of PAMM lesions in SD-OCT images.

Methods: This study leverages 133 SD-OCT retinal images, each containing instances of paracentral acute middle maculopathy lesions. A team of eye experts annotated the PAMM lesions in these images using bounding boxes. Then, labeled data were used to train a U-Net that performs pre-segmentation, producing region labels of pixel-level accuracy. To attain a highly-accurate final segmentation, we introduced X-Net, a novel neural network made up of a master and a slave U-Net. During training, it takes the expert annotated, and pixel-level pre-segment annotated images and employs sophisticated strategies to ensure the highest segmentation accuracy.

Results: The proposed method was rigorously evaluated on clinical retinal images excluded from training and achieved an accuracy of 99% with a high level of similarity between the automatic segmentation and expert annotation, as demonstrated by a mean Intersection-over-Union of 0.8. Alternative methods were tested on the same data. Single-stage neural networks proved insufficient for achieving satisfactory results, confirming that more advanced solutions, such as the proposed method, are necessary. We also found that X-Net using Attention U-net for both the pre-segmentation and X-Net arms for the final segmentation shows comparable performance to the proposed method, suggesting that the proposed approach remains a viable solution even when implemented with variants of the classic U-Net.

Conclusions: The proposed method exhibits reasonably high performance, validated through quantitative and qualitative evaluations. Medical eye specialists have also verified its validity and accuracy. Thus, it could be a viable tool in the clinical assessment of the retina. Additionally, the demonstrated approach for annotating the training set has proven to be effective in reducing the expert workload.

Keywords: Convolution neural networks; Optical coherence tomography; Paracentral acute middle maculopathy; Retinal foci; Segmentation; U-Net; Weakly supervised learning.

MeSH terms

  • Humans
  • Macular Degeneration* / diagnostic imaging
  • Neural Networks, Computer
  • Retina / diagnostic imaging
  • Retinal Diseases* / diagnostic imaging
  • Tomography, Optical Coherence / methods