BrainS: Customized multi-core embedded multiple scale neuromorphic system

Neural Netw. 2023 Aug:165:381-392. doi: 10.1016/j.neunet.2023.05.043. Epub 2023 May 30.

Abstract

Research on modeling and mechanisms of the brain remains the most urgent and challenging task. The customized embedded neuromorphic system is one of the most effective approaches for multi-scale simulations ranging from ion channel to network. This paper proposes BrainS, a scalable multi-core embedded neuromorphic system capable of accommodating massive and large-scale simulations. It is designed with rich external extension interfaces to support various types of input/output and communication requirements. The 3D mesh-based topology with an efficient memory access mechanism makes exploring the properties of neuronal networks possible. BrainS operates at 168 MHz and contains a model database ranging from ion channel to network scale within the Fundamental Computing Unit (FCU). At the ion channel scale, the Basic Community Unit (BCU) can perform real-time simulations of a Hodgkin-Huxley (HH) neuron with 16000 ion channels, using 125.54 KB of the SRAM. When the number of ion channels is within 64000, the HH neuron is simulated in real-time by 4 BCUs. At the network scale, the basal ganglia-thalamus (BG-TH) network consisting of 3200 Izhikevich neurons, providing a vital motor regulation function, is simulated in 4 BCUs with a power consumption of 364.8 mW. Overall, BrainS has an excellent performance in real-time and flexible configurability, providing an embedded application solution for multi-scale simulation.

Keywords: Multi-core embedded system; Multi-scale simulations; Neuromorphic hardware; Real-time system.

MeSH terms

  • Brain* / physiology
  • Computer Simulation
  • Neural Networks, Computer*
  • Neurons / physiology