Effect of heterogeneous environmental conditions on labyrinthine vegetation patterns

Phys Rev E. 2023 May;107(5-1):054219. doi: 10.1103/PhysRevE.107.054219.

Abstract

Self-organization is a ubiquitous phenomenon in Nature due to the permanent balance between injection and dissipation of energy. The wavelength selection process is the main issue of pattern formation. Stripe, hexagon, square, and labyrinthine patterns are observed in homogeneous conditions. In systems with heterogeneous conditions, a single wavelength is not the rule. Large-scale self-organization of vegetation in arid environments can be affected by heterogeneities, such as interannual precipitation fluctuations, fire occurrences, topographic variations, grazing, soil depth distribution, and soil-moisture islands. Here, we investigate theoretically the emergence and persistence of vegetation labyrinthine patterns in ecosystems under deterministic heterogeneous conditions. Based on a simple local vegetation model with a space-varying parameter, we show evidence of perfect and imperfect labyrinthine patterns, as well as disordered vegetation self-organization. The intensity level and the correlation of the heterogeneities control the regularity of the labyrinthine self-organization. The phase diagram and the transitions of the labyrinthine morphologies are described with the aid of their global spatial features. We also investigate the local spatial structure of labyrinths. Our theoretical findings qualitatively agree with satellite images data of arid ecosystems that show labyrinthinelike textures without a single wavelength.

MeSH terms

  • Ecosystem*
  • Models, Biological*
  • Soil / chemistry

Substances

  • Soil