Acetate controls endothelial-to-mesenchymal transition

Cell Metab. 2023 Jul 11;35(7):1163-1178.e10. doi: 10.1016/j.cmet.2023.05.010. Epub 2023 Jun 15.

Abstract

Endothelial-to-mesenchymal transition (EndMT), a process initiated by activation of endothelial TGF-β signaling, underlies numerous chronic vascular diseases and fibrotic states. Once induced, EndMT leads to a further increase in TGF-β signaling, thus establishing a positive-feedback loop with EndMT leading to more EndMT. Although EndMT is understood at the cellular level, the molecular basis of TGF-β-driven EndMT induction and persistence remains largely unknown. Here, we show that metabolic modulation of the endothelium, triggered by atypical production of acetate from glucose, underlies TGF-β-driven EndMT. Induction of EndMT suppresses the expression of the enzyme PDK4, which leads to an increase in ACSS2-dependent Ac-CoA synthesis from pyruvate-derived acetate. This increased Ac-CoA production results in acetylation of the TGF-β receptor ALK5 and SMADs 2 and 4 leading to activation and long-term stabilization of TGF-β signaling. Our results establish the metabolic basis of EndMT persistence and unveil novel targets, such as ACSS2, for the potential treatment of chronic vascular diseases.

Keywords: ACSS2; ALK5; PDK4; acetate; acetyl-CoA; atherosclerosis; endfothelial cells; endothelial-to-mesenchymal transition; transforming growth factor beta signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Endothelial Cells* / metabolism
  • Endothelium / metabolism
  • Humans
  • Signal Transduction
  • Transforming Growth Factor beta / metabolism
  • Vascular Diseases* / metabolism

Substances

  • Transforming Growth Factor beta