Insights into the statistical physics modeling and fractal like kinetic approach for the adsorption of As(III) on coordination polymer gel based on zirconium(IV) and 2-thiobarbituric acid

J Hazard Mater. 2023 Sep 5:457:131783. doi: 10.1016/j.jhazmat.2023.131783. Epub 2023 Jun 5.

Abstract

A novel coordination polymer gel based on zirconium(IV) and 2-thiobarbituric (ZrTBA) was synthesized and explored its potential to remediate As(III) from water. Box-Behnken design with desirability function and genetic algorithm yielded the optimized conditions (initial concentration=194 mg L-1, dosage = 42.2 mg, time= 95 min and pH = 4.9) for maximum removal efficiency (99.19 %). The experimental saturation capacity for As(III) was 178.30 mg g-1. The steric parameter n > 1 of the best fitted statistical physics model: monolayer with two energies (R2 = 0.987-0.992) suggested multimolecular mechanism with vertical orientation of As(III) molecules onto the two active sites. XPS and FTIR confirmed the two active sites being zirconium and oxygen. The adsorption energies (E1 = 35.81-37.63 kJ/mol; E2 = 29.50-36.49 kJ/mol) and isosteric heat of adsorption indicated that physical forces governed the As(III) uptake. DFT calculations implied that the weak electrostatic interaction and hydrogen bonding were involved. The best fitted (R2>0.99) fractal like pseudo first order model established energetic heterogeneity. ZrTBA showed excellent removal efficiency in the presence of potential interfering ions and could be used up to 5 cycles of adsorption-desorption with < 8 % loss in the efficiency. ZrTBA removed ≥96.06 % As(III) from real water samples spiked at different levels of As(III).

Keywords: Artificial Neural Network; As(III) removal; Box-Behnken design; Coordination Polymer Gel; Statistical physics modeling.