Evolution of 1/f Flux Noise in Superconducting Qubits with Weak Magnetic Fields

Phys Rev Lett. 2023 Jun 2;130(22):220602. doi: 10.1103/PhysRevLett.130.220602.

Abstract

The microscopic description of 1/f magnetic flux noise in superconducting circuits has remained an open question for several decades despite extensive experimental and theoretical investigation. Recent progress in superconducting devices for quantum information has highlighted the need to mitigate sources of qubit decoherence, driving a renewed interest in understanding the underlying noise mechanism(s). Though a consensus has emerged attributing flux noise to surface spins, their identity and interaction mechanisms remain unclear, prompting further study. Here, we apply weak in-plane magnetic fields to a capacitively shunted flux qubit (where the Zeeman splitting of surface spins lies below the device temperature) and study the flux-noise-limited qubit dephasing, revealing previously unexplored trends that may shed light on the dynamics behind the emergent 1/f noise. Notably, we observe an enhancement (suppression) of the spin-echo (Ramsey) pure-dephasing time in fields up to B=100 G. With direct noise spectroscopy, we further observe a transition from a 1/f to approximately Lorentzian frequency dependence below 10 Hz and a reduction of the noise above 1 MHz with increasing magnetic field. We suggest that these trends are qualitatively consistent with an increase of spin cluster sizes with magnetic field. These results should help to inform a complete microscopic theory of 1/f flux noise in superconducting circuits.

MeSH terms

  • Magnetic Fields*
  • Temperature