Component Distribution Regulation in Sn-Pb Perovskite Solar Cells through Selective Molecular Interaction

Adv Mater. 2023 Sep;35(39):e2303674. doi: 10.1002/adma.202303674. Epub 2023 Jul 28.

Abstract

Tin-lead (Sn-Pb) perovskite solar cells (PSCs) with near-ideal bandgap still lag behind the pure lead PSCs. Disordered heterojunctions caused by inhomogeneous Sn/Pb ratio in the binary perovskite film induce large recombination loss. Here, an Sn-Pb perovskite film is reported with homogeneous component and energy distribution by introducing hydrazine sulfate (HS) in Sn perovskite precursor. HS can form hydrogen bond network and coordinate with FASnI3 thus no longer bond with Pb2+ , which reduces the crystallization rate of tin perovskite to the level of lead analog. The strong bonding between SO4 2- and Sn2+ can also suppress its oxidation. As a result, the Sn-Pb PSCs with HS exhibit a significantly improved VOC of 0.91 V along with a high efficiency of 23.17%. Meanwhile, the hydrogen bond interaction network, strong bonding between Sn2+ and sulfate ion also improve the thermal, storage, and air stability of resulting devices.

Keywords: crystallization rate; hydrogen bond network; tin-lead perovskite solar cells; uniform element and energy distribution.