Transcriptomics reveals a distinct metabolic profile in T cells from severe allergic asthmatic patients

Front Allergy. 2023 May 31:4:1129248. doi: 10.3389/falgy.2023.1129248. eCollection 2023.

Abstract

The reasons behind the onset and continuation of chronic inflammation in individuals with severe allergies are still not understood. Earlier findings indicated that there is a connection between severe allergic inflammation, systemic metabolic alterations and impairment of regulatory functions. Here, we aimed to identify transcriptomic alterations in T cells associated with the degree of severity in allergic asthmatic patients. T cells were isolated from severe (n = 7) and mild (n = 9) allergic asthmatic patients, and control (non-allergic, non-asthmatic healthy) subjects (n = 8) to perform RNA analysis by Affymetrix gene expression. Compromised biological pathways in the severe phenotype were identified using significant transcripts. T cells' transcriptome of severe allergic asthmatic patients was distinct from that of mild and control subjects. A higher count of differentially expressed genes (DEGs) was observed in the group of individuals with severe allergic asthma vs. control (4,924 genes) and vs. mild (4,232 genes) groups. Mild group also had 1,102 DEGs vs. controls. Pathway analysis revealed alterations in metabolism and immune response in the severe phenotype. Severe allergic asthmatic patients presented downregulation in genes related to oxidative phosphorylation, fatty acid oxidation and glycolysis together with increased expression of genes coding inflammatory cytokines (e.g. IL-19, IL-23A and IL-31). Moreover, the downregulation of genes involved in TGFβ pathway together with a decreased tendency on the percentage of T regulatory cell (CD4 + CD25+), suggest a compromised regulatory function in severe allergic asthmatic patients. This study demonstrates a transcriptional downregulation of metabolic and cell signalling pathways in T cells of severe allergic asthmatic patients associated with diminished regulatory T cell function. These findings support a link between energy metabolism of T cells and allergic asthmatic inflammation.

Keywords: CD3+cells; Tregs; allergy; inflammation; metabolism; severe phenotype; t cells; transcriptomics.

Grants and funding

This work was supported by ISCIII (PI18/01467 and PI19/00044), cofunded by FEDER “Investing in your future” for the thematic network and co-operative research centres ARADyAL RD16/0006/0015 and RICORS Red de Enfermedades Inflamatorias (REI) RD21 0002 0008. This work was supported by the Ministry of Science and Innovation in Spain (PCI2018-092930), co-funded by the European program ERA HDHL—Nutrition and the Epigenome, project Dietary Intervention in Food Allergy: Microbiome, Epigenetic and Metabolomic interactions (DIFAMEM), Junta de Andalucía (PC-0278-2017) and Fundación Mutua Madrileña (AP177712021). CG-C was supported by a contract “Atracción de talento investigador” from Community of Madrid, Spain (2017–2020).