Sustainable biopolymer soil stabilisation: the effect of microscale chemical characteristics on macroscale mechanical properties

Acta Geotech. 2023;18(6):3213-3227. doi: 10.1007/s11440-022-01732-0. Epub 2022 Dec 11.

Abstract

Sustainable biopolymer additives offer a promising soil stabilisation methodology, with a strong potential to be tuned to soil's specific nature, allowing the tailoring of mechanical properties for a range of geotechnical applications. However, the biopolymer chemical characteristics driving soil mechanical property modifications have yet to be fully established. Within this study we employ a cross-scale approach, utilising the differing galactose:mannose (G:M) ratios of various Galactomannan biopolymers (Guar Gum G:M 1:2, Locust Bean Gum G:M 1:4, Cassia Gum G:M 1:5) to investigate the effect of microscale chemical functionality upon macroscale soil mechanical properties. Molecular weight effects are also investigated, utilising Carboxy Methyl Cellulose (CMC). Soil systems comprising of SiO2 (100%) (SiO2) and a Mine Tailing (MT) exemplar composed of SiO2 (90%) + Fe2O3 (10%) (SiO2 + Fe) are investigated. The critical importance of biopolymer additive chemical functionality for the resultant soil mechanical properties, is demonstrated..For Galactomannan G:M 1:5 stabilised soils the 'high-affinity, high-strength', mannose-Fe interactions at the microscale (confirmed by mineral binding characterisation) are attributed to the 297% increase in the SiO2 + Fe systems Unconfined Compressive Strength (UCS), relative to SiO2 only. Conversely for SiO2 Galactomannan-stabilised soils, when increasing the G:M ratio from 1:2 to 1:5, a 85% reduction in UCS is observed, attributed to mannose's inability to interact with SiO2. UCS variations of up to a factor of 12 were observed across the biopolymer-soil mixes studied, in line with theoretically and experimentally expected values, due to the differences in the G:M ratios. The limited impact of molecular weight upon soil strength properties is also shown in CMC-stabilised soils. When considering a soil's stiffness and energy absorbance, the importance of biopolymer-biopolymer interaction strength and quantity is discussed, further deciphering biopolymer characteristics driving soil property modifications. This study highlights the importance of biopolymer chemistry for biopolymer stabilisation studies, illustrating the use of simple low-cost, accessible chemistry-based instrumental tools and outlining key design principles for the tailoring of biopolymer-soil composites for specific geotechnical applications.

Supplementary information: The online version contains supplementary material available at 10.1007/s11440-022-01732-0.

Keywords: Biopolymer; Cross-scale; Design principles; Galactomannan; Micro to macro; Mine tailings; Stabilisation; Sustainable geotechnics.