A Genetic Algorithm for Universal Optimization of Ultrasensitive Surface Plasmon Resonance Sensors with 2D Materials

ACS Omega. 2023 May 26;8(23):20792-20800. doi: 10.1021/acsomega.3c01387. eCollection 2023 Jun 13.

Abstract

We present a general optimization technique for surface plasmon resonance, (SPR) yielding a range of ultrasensitive SPR sensors from a materials database with an enhancement of ∼100%. Applying the algorithm, we propose and demonstrate a novel dual-mode SPR structure coupling SPP and a waveguide mode within GeO2 featuring an anticrossing behavior and an unprecedented sensitivity of 1364 deg/RIU. An SPR sensor operating at wavelengths of 633 nm having a bimetal Al/Ag structure sandwiched between hBN can achieve a sensitivity of 578 deg/RIU. For a wavelength of 785 nm, we optimized a sensor as a Ag layer sandwiched between hBN/MoS2/hBN heterostructures achieving a sensitivity of 676 deg/RIU. Our work provides a guideline and general technique for the design and optimization of high sensitivity SPR sensors for various sensing applications in the future.