Efficient Removal of Analgesic and Anti-Inflammatory Drugs from Sewage Treatment Plant Effluents Using Magnetite Nanoparticles Synthesized Red Mud

Water Air Soil Pollut. 2023;234(6):384. doi: 10.1007/s11270-023-06404-7. Epub 2023 Jun 8.

Abstract

Due to the COVID-19 epidemic, the consumption of pharmaceuticals, especially paracetamol, has sharply increased on a global scale. The increasing concentration of analgesic and anti-inflammatory drugs (AAIDs) in the aquatic medium is a global problem for human and aquatic life. Therefore, simple and effective treatment options for removing AAIDs from wastewater after the COVID-19 pandemic are needed. The removal of AAIDs (acetaminophen, acetylsalicylic acid, codeine, diclofenac, ibuprofen, indomethacin, ketoprofen, mefenamic acid, naproxen, and phenylbutazone) from sewage treatment plant (STP) effluents by the prepared magnetite nanoparticles synthesized from red mud (mNPs-RM) is presented for the first time in this study. The removal efficiencies of AAIDs onto mNPs-RM were determined to be between 90% (diclofenac) and 100% (naproxen, codeine, and indomethacin). Acetaminophen (paracetamol) was used as a model compound in kinetic and isotherm model studies. The adsorption of acetaminophen was matched well with the pseudo second order kinetic model. Film diffusion governed its rate mechanism. The Freundlich isotherm model preferably fitted the adsorption data with an adsorption capacity of 370 mg/g at 120 min contact time at pH 7.0 at 25 °C. Furthermore, the regenerated mNPs-RM were used four times without affecting the adsorption capacity and the magnetic separability. mNPs-RM can be used as a simple, inexpensive and effective adsorbent for removing AAIDs from STP effluents. Also, low cost adsorbent obtained from industrial waste could be employed to replace the high cost activated carbons for the adsorption of other micro pollutants in STP effluents.

Supplementary information: The online version contains supplementary material available at 10.1007/s11270-023-06404-7.

Keywords: Anti-inflammatory/analgesic pharmaceuticals; Effluent, magnetic nanoparticles; Red mud; Sewage treatment plant.