Laboratory-based versus non-laboratory-based World Health Organization risk equations for assessment of cardiovascular disease risk

BMC Med Res Methodol. 2023 Jun 15;23(1):141. doi: 10.1186/s12874-023-01961-1.

Abstract

Background: The WHO model has laboratory-based and non-laboratory-based versions for 10-year risk prediction of cardiovascular diseases. Due to the fact that in some settings, there may not be the necessary facilities for risk assessment with a laboratory-based model, the present study aimed to determine the agreement between laboratory-based and non-laboratory-based WHO cardiovascular risk equations.

Methods: In this cross-sectional study, we used the baseline data of 6796 individuals without a history of cardiovascular disease and stroke who participated in the Fasa cohort study. The risk factors of the laboratory-based model included age, sex, systolic blood pressure (SBP), diabetes, smoking and total cholesterol, while the non-laboratory-based model included age, sex, SBP, smoking and BMI. Kappa coefficients was used to determine the agreement between the grouped risk and Bland-Altman plots were used to determine the agreement between the scores of the two models. Sensitivity and specificity of non-laboratory-based model were measured at the high-risk threshold.

Results: In the whole population, the agreement between the grouped risk of the two models was substantial (percent agreement = 79.0%, kappa = 0.68). The agreement was better in males than in females. A substantial agreement was observed in all males (percent agreement = 79.8%, kappa = 0.70) and males < 60 years old (percent agreement = 79.9%, kappa = 0.67). The agreement in males ≥ 60 years old was moderate (percent agreement = 79.7%, kappa = 0.59). The agreement among females was also substantial (percent agreement = 78.3%, kappa = 0.66). The agreement for females < 60 years old, (percent agreement = 78.8%, kappa = 0.61) was substantial and for females ≥ 60 years old, (percent agreement = 75.8%, kappa = 0.46) was moderate. According to Bland-Altman plots, the limit of agreement was (95%CI: -4.2% to 4.3%) for males and (95%CI: -4.1% to 4.6%) for females. The range of agreement was suitable for both males < 60 years (95%CI: -3.8% to 4.0%) and females < 60 years (95%CI: -3.6% to 3.9%). However, it was not suitable for males ≥ 60 years (95% CI: -5.8% to 5.5%) and females ≥ 60 years (95%CI: -5.7% to 7.4%). At the high-risk threshold of 20% in non-laboratory and laboratory-based models, the sensitivity of the non-laboratory-based model was 25.7%, 70.7%, 35.7%, and 35.4% for males < 60 years, males ≥ 60 years, females < 60 years, and females ≥ 60 years, respectively. At the high-risk threshold of 10% in non-laboratory-based and 20% in laboratory-based models, the non-laboratory model has high sensitivity of 100% for males ≥ 60 years, females < 60 years, females ≥ 60 years, and 91.4% for males < 60 years.

Conclusion: A good agreement was observed between laboratory-based and non-laboratory-based versions of the WHO risk model. Also, at the risk threshold of 10% to detect high-risk individuals, the non-laboratory-based model has acceptable sensitivity for practical risk assessment and the screening programs in settings where resources are limited and people do not have access to laboratory tests.

Keywords: Cardiovascular disease; Laboratory-based; Non-laboratory-based; Risk prediction; Sensitivity; Specificity; WHO.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cardiovascular Diseases* / epidemiology
  • Cohort Studies
  • Cross-Sectional Studies
  • Female
  • Humans
  • Male
  • Middle Aged
  • Risk Factors
  • World Health Organization