Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos

Nat Biotechnol. 2024 Apr;42(4):638-650. doi: 10.1038/s41587-023-01821-9. Epub 2023 Jun 15.

Abstract

Base editors have substantial promise in basic research and as therapeutic agents for the correction of pathogenic mutations. The development of adenine transversion editors has posed a particular challenge. Here we report a class of base editors that enable efficient adenine transversion, including precise A•T-to-C•G editing. We found that a fusion of mouse alkyladenine DNA glycosylase (mAAG) with nickase Cas9 and deaminase TadA-8e catalyzed adenosine transversion in specific sequence contexts. Laboratory evolution of mAAG significantly increased A-to-C/T conversion efficiency up to 73% and expanded the targeting scope. Further engineering yielded adenine-to-cytosine base editors (ACBEs), including a high-accuracy ACBE-Q variant, that precisely install A-to-C transversions with minimal Cas9-independent off-targeting effects. ACBEs mediated high-efficiency installation or correction of five pathogenic mutations in mouse embryos and human cell lines. Founder mice showed 44-56% average A-to-C edits and allelic frequencies of up to 100%. Adenosine transversion editors substantially expand the capabilities and possible applications of base editing technology.

MeSH terms

  • Adenine* / metabolism
  • Adenosine
  • Animals
  • CRISPR-Cas Systems / genetics
  • Cytosine / metabolism
  • Gene Editing*
  • Humans
  • Mammals / genetics
  • Mice
  • Mutation

Substances

  • Adenine
  • Cytosine
  • Adenosine