Rearing is critical for forming spatial representations in pre-weanling rats

Behav Brain Res. 2023 Aug 24:452:114545. doi: 10.1016/j.bbr.2023.114545. Epub 2023 Jun 14.

Abstract

Rearing, i.e., standing on the hind limbs in an upright posture, is part of a rat's innate exploratory motor program. Here, we examined in developing rats whether rearing is critical for the pup's capability to form spatial representations based on distal environmental cues. Pups (male) were tested at PD18, i.e., the first day they typically exhibit stable rearing, on a spatial habituation paradigm comprising a Familiarization session (with the pup exposed to an arena with a specific configuration of distal cues) followed, 3 h later, by a Test session where the pups were either re-exposed to the identical distal cue configuration (NoChange) or a changed configuration (DistalChange). In Experiment 1, rearing activity (rearing events, duration) decreased from Familiarization to Test in the NoChange pups but, remained elevated in the DistalChange group indicating that these pups recognized the distal novelty. Recognition of distal novelty was associated with increased c-Fos expression in hippocampal and medial prefrontal cortex (mPFC) areas, compared with NoChange pups. Analysis of GAD67+ cells suggested a parallel increase in excitation and inhibition specifically in prelimbic mPFC networks in response to distal cue changes. In Experiment 2, the pups were mechanically prevented from rearing while still seeing the distal cues during Familiarization. Rearing activity in the Test session of these pups did not differ between groups that were or were not exposed to a changed distal cue configuration at Test. The findings evidence a critical role of rearing for the emergence of allocentric representations integrating distal space during early development.

Keywords: Development; Distal cues; Hippocampus; Medial prefrontal cortex; Rearing; Upright position.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cues*
  • Male
  • Prefrontal Cortex / metabolism
  • Rats
  • Recognition, Psychology*