Monolayer supertubes of Carbon-Armored platinum nanocrystals enabling robust oxygen reduction electrocatalysis

J Colloid Interface Sci. 2023 Oct 15:648:719-726. doi: 10.1016/j.jcis.2023.06.036. Epub 2023 Jun 10.

Abstract

Self-assembled superstructures composed of nanocrystals (NCs) have shown immense potential for enhancing the performance in electrocatalytic applications. However, there has been limited research on the self-assembly of platinum (Pt) into low-dimensional superstructures as efficient electrocatalysts for oxygen reduction reaction (ORR). In this study, we designed a unique tubular superstructure composed of monolayer or sub-monolayer carbon-armored platinum nanocrystals (Pt NCs) using a template-assisted epitaxial assembly approach. The organic ligands on the surface of Pt NCs were in situ carbonized, resulting in few-layer graphitic carbon shells that encapsulate Pt NCs. Due to their monolayer assembly and tubular geometry, the Pt utilization of the supertubes was 1.5 times higher than that of conventional carbon-supported Pt NCs. As a result, such Pt supertubes exhibit remarkable electrocatalytic performance for the ORR in acidic media, with a high half-wave potential of 0.918 V and a high mass activity of 181 A g-1Pt at 0.9 V, which are comparable to commercial carbon-supported Pt (Pt/C) catalysts. Furthermore, the Pt supertubes demonstrate robust catalytic stability, as confirmed by long-term accelerated durability tests and identical-location transmission electron microscopy. This study presents a new approach to designing Pt superstructures for highly efficient and stable electrocatalysis.

Keywords: Oxygen reduction reaction; Platinum nanocrystals; Self-assembly; Superstructures; Supertubes.