Controlling polyHIPE Surface Properties by Tuning the Hydrophobicity of MOF Particles Stabilizing a Pickering Emulsion

ACS Appl Mater Interfaces. 2023 Jun 28;15(25):30707-30716. doi: 10.1021/acsami.3c02987. Epub 2023 Jun 15.

Abstract

Metal-organic frameworks (MOFs) show promise for the capture of greenhouse gases. To be used at a large scale in fixed-bed processes, their shaping under a hierarchical structure is mandatory and remains a major challenge, while keeping available their high specific surface area. For that purpose, we propose herein an original method based on the stabilization of a paraffin-in-water Pickering emulsion by a fluorinated Zr MOF (UiO-66(F4)) with polyHIPEs (polymers from high internal phase emulsions) strategy consisting of the polymerization of monomers in the external phase. After polymerization of the continuous phase and elimination of the paraffin, a hierarchically structured monolith is obtained with the UiO-66(F4) particles embedded in the polymer wall and covering the internal porosity. To avoid the pore blocking induced by the embedment of the MOF particles, our strategy was to modify their hydrophilic/hydrophobic balance with a controlled adsorption of hydrophobic molecules (perfluorooctanoic acid, PFOA) on the UiO-66(F4) particles. This will induce a displacement of the MOF position at the paraffin-water interface in the emulsion and then make the particles less embedded into the polymer wall. This leads to the formation of hierarchically structured monoliths integrating UiO-66(F4) particles with higher accessibility, maintaining their original properties and allowing their application in fixed-bed processes. This strategy was demonstrated by N2 and CO2 capture, and we believe that such original strategy could be applied to other MOF materials.

Keywords: CO2 adsorption; Pickering emulsion; metal−organic frameworks; porous materials; shaping.