Electrochemically Generated Carbanions Enable Isomerizing Allylation and Allenylation of Aldehydes with Alkenes and Alkynes

J Am Chem Soc. 2023 Jun 28;145(25):14143-14154. doi: 10.1021/jacs.3c04864. Epub 2023 Jun 15.

Abstract

The direct coupling of aldehydes with petrochemical feedstock alkenes and alkynes would represent a practical and streamlined approach for allylation and allenylation chemistry. However, conventional approaches commonly require preactivated substrates or strong bases to generate allylic or propargylic carbanions and only afford branched allylation or propargylation products. Developing a mild and selective approach to access synthetically useful linear allylation and allenylation products is highly desirable, albeit with formidable challenges. We report a strategy using hydrogen evolution reaction (HER) to generate a carbanion from weakly acidic sp3 C-H bonds (pKa ∼ 35-40) under mild reaction conditions, obviating the use of strong bases, Schlenk techniques, and multistep procedures. The cathodically generated carbanion reverses the typical reaction selectivity to afford unconventional isomerizing allylation and allenylation products (125 examples). The generation of carbanions was monitored and identified by in situ ultraviolet-visible (UV-vis) spectroelectrochemistry. Furthermore, we extended this protocol to the generation of other carbanions and their application in coupling reactions between alcohols with carbanions. The appealing features of this approach include mild reaction conditions, excellent functional group tolerance, unconventional chemo- and regioselectivity, and the diverse utility of products, which includes offering direct access to diene luminophores and bioactive scaffolds. We also performed cyclic voltammetry, control experiments, and density functional theory (DFT) calculations to rationalize the observed reaction selectivity and mechanism.