Stabilization of transition metal heterojunctions inside porous materials for high-performance catalysis

Dalton Trans. 2023 Jul 4;52(26):8834-8849. doi: 10.1039/d3dt01020a.

Abstract

Transition metal-based heterostructural materials are a class of very promising substitutes for noble metal-based catalysts for high-performance catalysis, due to their inherent internal electric field at the interface in the heterojunctions, which could induce electron relocalization and facilitate charge carrier migration between different metal sites at heterostructural boundaries. However, redox-active metal species suffer from reduction, oxidation, migration, aggregation, leaching and poisoning in catalysis, which results in heavy deterioration of the catalytic properties of transition metal-based heterojunctions and frustrates their practical applications. To improve the stability of transition metal-based heterojunctions and sufficiently expose redox-active sites at the heterosurfaces, many kinds of porous materials have been used as porous hosts for the stabilization of non-precious metal heterojunctions. This review article will discuss recently developed strategies for encapsulation and stabilization of transition metal heterojunctions inside porous materials, and highlight their improved stability and catalytic performance through the spatial confinement effect and synergistic interaction between the heterojunctions and the host matrices.

Publication types

  • Review