Metabolomic NMR analysis and organoleptic perceptions of pomegranate wines: Influence of cultivar and yeast on the product characteristics

Heliyon. 2023 May 27;9(6):e16774. doi: 10.1016/j.heliyon.2023.e16774. eCollection 2023 Jun.

Abstract

Pomegranate (Punica granatum L.) fruits are a historical agricultural product of the Mediterranean basin that became increasingly popular in the latest years for being rich in antioxidants and other micronutrients, and are extensively commercialized as fruits, juice, jams and, in some Eastern countries, as a fermented alcoholic beverage. In this work, four different pomegranate wines specifically designed using combinations of two cultivars (Jolly Red and Smith) and two yeast starters with markedly different characteristics (Saccharomyces cerevisiae Clos and Saccharomyces cerevisiae ex-bayanus EC1118) were analyzed. The chemical characterization of the wines together with the originating unfermented juices was performed by 1H NMR spectroscopy metabolomic analysis. The full spectra were used for unsupervised and supervised statistical multivariate analysis (MVA), namely Principal Component Analysis (PCA), Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), and sparse PCA (SPCA). The MVA of the wines showed a clear discrimination between the cultivars, and a smaller, yet significant, discrimination between the yeasts used. In particular, a higher content of citrate and gallate was observed for the Smith cv. and, on the contrary, a statistically significant higher content of fructose, malate, glycerol, 2,3 butanediol, trigonelline, aromatic amino acids and 4-hydrophenylacetate was observed in Jolly Red pomegranate wines samples. Significant interaction among the pomegranate cultivar and the fermenting yeast was also observed. Sensorial analysis was performed by a panel of testing experts. MVA of tasting data showed that the cultivar significantly affected the organoleptic parameters considered, while the yeast had a minor impact. Correlation analysis between NMR-detected metabolites and organoleptic descriptors identified several potential sensorially-active molecules as those significantly impacting the characteristics of the pomegranate wines.

Keywords: 1H NMR spectroscopy; Multivariate statistical analysis; OPLS-DA; PCA; Pomegranate wine; Punica granatum L.; Saccharomyces cerevisiae; Sparse PCA.