Endothelin-1 induces connective tissue growth factor expression in human lung fibroblasts by disrupting HDAC2/Sin3A/MeCP2 corepressor complex

J Biomed Sci. 2023 Jun 14;30(1):40. doi: 10.1186/s12929-023-00931-5.

Abstract

Background: Reduction of histone deacetylase (HDAC) 2 expression and activity may contribute to amplified inflammation in patients with severe asthma. Connective tissue growth factor (CTGF) is a key mediator of airway fibrosis in severe asthma. However, the role of the HDAC2/Sin3A/methyl-CpG-binding protein (MeCP) 2 corepressor complex in the regulation of CTGF expression in lung fibroblasts remains unclear.

Methods: The role of the HDAC2/Sin3A/MeCP2 corepressor complex in endothelin (ET)-1-stimulated CTGF production in human lung fibroblasts (WI-38) was investigated. We also evaluated the expression of HDAC2, Sin3A and MeCP2 in the lung of ovalbumin-induced airway fibrosis model.

Results: HDAC2 suppressed ET-1-induced CTGF expression in WI-38 cells. ET-1 treatment reduced HDAC2 activity and increased H3 acetylation in a time-dependent manner. Furthermore, overexpression of HDAC2 inhibited ET-1-induced H3 acetylation. Inhibition of c-Jun N-terminal kinase, extracellular signal-regulated kinase, or p38 attenuated ET-1-induced H3 acetylation by suppressing HDAC2 phosphorylation and reducing HDAC2 activity. Overexpression of both Sin3A and MeCP2 attenuated ET-1-induced CTGF expression and H3 acetylation. ET-1 induced the disruption of the HDAC2/Sin3A/MeCP2 corepressor complex and then prompted the dissociation of HDAC2, Sin3A, and MeCP2 from the CTGF promoter region. Overexpression of HDAC2, Sin3A, or MeCP2 attenuated ET-1-stimulated AP-1-luciferase activity. Moreover, Sin3A- or MeCP2-suppressed ET-1-induced H3 acetylation and AP-1-luciferase activity were reversed by transfection of HDAC2 siRNA. In an ovalbumin-induced airway fibrosis model, the protein levels of HDAC2 and Sin3A were lower than in the control group; however, no significant difference in MeCP2 expression was observed. The ratio of phospho-HDAC2/HDAC2 and H3 acetylation in the lung tissue were higher in this model than in the control group. Overall, without stimulation, the HDAC2/Sin3A/MeCP2 corepressor complex inhibits CTGF expression by regulating H3 deacetylation in the CTGF promoter region in human lung fibroblasts. With ET-1 stimulation, the HDAC2/Sin3A/MeCP2 corepressor complex is disrupted and dissociated from the CTGF promoter region; this is followed by AP-1 activation and the eventual initiation of CTGF production.

Conclusions: The HDAC2/Sin3A/MeCP2 corepressor complex is an endogenous inhibitor of CTGF in lung fibroblasts. Additionally, HDAC2 and Sin3A may be of greater importance than MeCP2 in the pathogenesis of airway fibrosis.

Keywords: Airway fibrosis; CTGF; ET-1; HDAC2; Lung fibroblasts; MeCP2; Sin3A.

MeSH terms

  • Asthma*
  • Co-Repressor Proteins
  • Connective Tissue Growth Factor / genetics
  • Endothelin-1 / genetics
  • Fibroblasts
  • Histone Deacetylase 2 / genetics
  • Humans
  • Luciferases
  • Lung
  • Ovalbumin
  • Pulmonary Fibrosis* / chemically induced
  • Pulmonary Fibrosis* / genetics
  • Transcription Factor AP-1

Substances

  • Endothelin-1
  • Connective Tissue Growth Factor
  • Ovalbumin
  • Transcription Factor AP-1
  • Co-Repressor Proteins
  • Luciferases
  • HDAC2 protein, human
  • Histone Deacetylase 2