Interfullerene Electronic Interactions and Excited-State Dynamics in Fullerene Dumbbell Conjugates

J Am Chem Soc. 2023 Jul 5;145(26):14190-14195. doi: 10.1021/jacs.3c03486. Epub 2023 Jun 13.

Abstract

Several dumbbell conjugates featuring M3N@Ih-C80 (M = Sc, Y) and C60 were prepared to systematically investigate interfullerene electronic interactions and excited state dynamics. From electrochemical investigations, we concluded that the redox potentials of our M3N@Ih-C80 (M = Sc, Y) dumbbells depend largely on the interfullerene electronic interactions. Assisted by DFT calculation, the unique role of metal atoms was highlighted. Most importantly, ultrafast spectroscopy experiments revealed symmetry-breaking charge separation in Sc3N@C80-dumbbell to yield an unprecedented (Sc3N@C80)•+-(Sc3N@C80)•- charge separated state. This is, to the best of our knowledge, the first time that symmetry-breaking charge separation following photoexcitation is corroborated in a fullerene system. As such, our work shed light on the significance of interfullerene electronic interactions and their uniqueness for modulating excited state properties.