Meta-QTLs, ortho-MQTLs, and candidate genes for thermotolerance in wheat (Triticum aestivum L.)

Mol Breed. 2021 Nov 15;41(11):69. doi: 10.1007/s11032-021-01264-7. eCollection 2021 Nov.

Abstract

Meta-QTL analysis for thermotolerance in wheat was conducted to identify robust meta-QTLs (MQTLs). In this study, 441 QTLs related to 31 heat-responsive traits were projected on the consensus map with 50,310 markers. This exercise resulted in the identification of 85 MQTLs with confidence interval (CI) ranging from 0.11 to 34.9 cM with an average of 5.6 cM. This amounted to a 2.96-fold reduction relative to the mean CI (16.5 cM) of the QTLs used. Seventy-seven (77) of these MQTLs were also compared and verified with the results of recent genome-wide association studies (GWAS). The 85 MQTLs included seven MQTLs that are particularly useful for breeding purposes (we called them breeders' MQTLs). Seven ortho-MQTLs between wheat and rice genomes were also identified using synteny and collinearity. The MQTLs were used for the identification of 1,704 candidate genes (CGs). In silico expression analysis of these CGs permitted identification of 182 differentially expressed genes (DEGs), which included 36 high confidence CGs with known functions previously reported to be important for thermotolerance. These high confidence CGs encoded proteins belonging to the following families: protein kinase, WD40 repeat, glycosyltransferase, ribosomal protein, SNARE associated Golgi protein, GDSL lipase/esterase, SANT/Myb domain, K homology domain, etc. Thus, the present study resulted in the identification of MQTLs (including breeders' MQTLs), ortho-MQTLs, and underlying CGs, which could prove useful not only for molecular breeding for the development of thermotolerant wheat cultivars but also for future studies focused on understanding the molecular basis of thermotolerance.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-021-01264-7.

Keywords: Candidate genes; GWAS; Heat stress tolerance; Meta-QTLs; Ortho-MQTLs; Wheat.