Varicella-zoster virus proteome-wide T-cell screening demonstrates low prevalence of virus-specific CD8 T-cells in latently infected human trigeminal ganglia

J Neuroinflammation. 2023 Jun 12;20(1):141. doi: 10.1186/s12974-023-02820-y.

Abstract

Background: Trigeminal ganglia (TG) neurons are an important site of lifelong latent varicella-zoster virus (VZV) infection. Although VZV-specific T-cells are considered pivotal to control virus reactivation, their protective role at the site of latency remains uncharacterized.

Methods: Paired blood and TG specimens were obtained from ten latent VZV-infected adults, of which nine were co-infected with herpes simplex virus type 1 (HSV-1). Short-term TG-derived T-cell lines (TG-TCL), generated by mitogenic stimulation of TG-derived T-cells, were probed for HSV-1- and VZV-specific T-cells using flow cytometry. We also performed VZV proteome-wide screening of TG-TCL to determine the fine antigenic specificity of VZV reactive T-cells. Finally, the relationship between T-cells and latent HSV-1 and VZV infections in TG was analyzed by reverse transcription quantitative PCR (RT-qPCR) and in situ analysis for T-cell proteins and latent viral transcripts.

Results: VZV proteome-wide analysis of ten TG-TCL identified two VZV antigens recognized by CD8 T-cells in two separate subjects. The first was an HSV-1/VZV cross-reactive CD8 T-cell epitope, whereas the second TG harbored CD8 T-cells reactive with VZV specifically and not the homologous peptide in HSV-1. In silico analysis showed that HSV-1/VZV cross reactivity of TG-derived CD8 T-cells reactive with ten previously identified HSV-1 epitopes was unlikely, suggesting that HSV-1/VZV cross-reactive T-cells are not a common feature in dually infected TG. Finally, no association was detected between T-cell infiltration and VZV latency transcript abundance in TG by RT-qPCR or in situ analyses.

Conclusions: The low presence of VZV- compared to HSV-1-specific CD8 T-cells in human TG suggests that VZV reactive CD8 T-cells play a limited role in maintaining VZV latency.

Keywords: Herpes simplex virus; Human; Latency; T-cells; Trigeminal ganglion; Varicella-zoster virus.

MeSH terms

  • Adult
  • CD8-Positive T-Lymphocytes
  • Epitopes
  • Herpesvirus 1, Human*
  • Herpesvirus 3, Human
  • Humans
  • Prevalence
  • Proteome*
  • Trigeminal Ganglion

Substances

  • Proteome
  • Epitopes