Completing the view - histologic insights from circular AAA specimen including 3D imaging : A methodologic approach towards histologic analysis of circumferential AAA samples

Diagn Pathol. 2023 Jun 12;18(1):73. doi: 10.1186/s13000-023-01359-z.

Abstract

Abdominal aortic aneurysm (AAA) is a pathologic enlargement of the infrarenal aorta with an associated risk of rupture. However, the responsible mechanisms are only partially understood. Based on murine and human samples, a heterogeneous distribution of characteristic pathologic features across the aneurysm circumference is expected. Yet, complete histologic workup of the aneurysm sac is scarcely reported. Here, samples from five AAAs covering the complete circumference partially as aortic rings are investigated by histologic means (HE, EvG, immunohistochemistry) and a new method embedding the complete ring. Additionally, two different methods of serial histologic section alignment are applied to create a 3D view. The typical histopathologic features of AAA, elastic fiber degradation, matrix remodeling with collagen deposition, calcification, inflammatory cell infiltration and thrombus coverage were distributed without recognizable pattern across the aneurysm sac in all five patients. Analysis of digitally scanned entire aortic rings facilitates the visualization of these observations. Immunohistochemistry is feasible in such specimen, however, tricky due to tissue disintegration. 3D image stacks were created using open-source and non-generic software correcting for non-rigid warping between consecutive sections. Secondly, 3D image viewers allowed visualization of in-depth changes of the investigated pathologic hallmarks. In conclusion, this exploratory descriptive study demonstrates a heterogeneous histomorphology around the AAA circumference. Warranting an increased sample size, these results might need to be considered in future mechanistic research, especially in reference to intraluminal thrombus coverage. 3D histology of such circular specimen could be a valuable visualization tool for further analysis.

Keywords: 3D histology; Abdominal Aortic Aneurysm; Aneurysm sac; Inflammation.

MeSH terms

  • Animals
  • Calcinosis*
  • Humans
  • Imaging, Three-Dimensional*
  • Mice